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We show that general string-net condensed states have a natural representation in terms of tensor product
states �TPSs�. These TPSs are built from local tensors. They can describe both states with short-range entangle-
ment �such as the symmetry-breaking states� and states with long-range entanglement �such as string-net
condensed states with topological/quantum order�. The tensor product representation provides a kind of “mean-
field” description for topologically ordered states and could be a powerful way to study quantum phase
transitions between such states. As an attempt in this direction, we show that the constructed TPSs are fixed
points under a certain wave-function renormalization-group transformation for quantum states.
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I. INTRODUCTION

In modern condensed-matter theory, an essential problem
is the classification of phases of matter and the associated
phase transitions. Long-range correlation and broken
symmetry1 provide the conceptual foundation to the tradi-
tional theory of phases. The mathematical description of
such a theory is realized very naturally in terms of order
parameters and group theory. The Landau symmetry-
breaking theory was so successful that people started to be-
lieve that the symmetry-breaking theory described all phases
and phase transitions. From this point of view, the discovery
of the fractional quantum Hall �FQH� effect2 in the 1980s
appears even more astonishing than what we realized. These
unique phases of matter have taught us a very important
lesson: when quantum effects dominate, entirely new kinds
of order, orders not associated with any symmetry, are
possible.3 Similarly, new type of quantum phase transitions,
such as the continuous phase transitions between states with
the same symmetry4–7 and incompatible symmetries8,9 are
possible. There is literally a whole new world of quantum
phases and phase transitions waiting to be explored. The con-
ventional approaches, such as symmetry breaking and order
parameters, simply do not apply here.

The particular kind of order present in the fractional quan-
tum Hall effect is known as topological order,3 or more spe-
cifically, chiral topological order because of broken parity
and time-reversal �PT� symmetry. Topological phases which
preserve parity and time-reversal symmetry are also
possible7,10–19 and we will focus on these phases in this pa-
per. An appealing physical picture has recently been pro-
posed for this large class of PT symmetric topological phases
in which the relevant degrees of freedom are stringlike ob-
jects called string nets.20,21 Just as particle condensation pro-
vides a physical picture for many symmetry-breaking phases,
the physics of highly fluctuation strings, string-net conden-
sation, has been found to underlie PT symmetric topological
phases.

The physical picture of string-net condensation provides
also a natural mathematical framework, tensor category
theory, which can be used to write down fixed-point wave
functions and calculate topological quantum numbers.21,22

These topological quantum numbers include the ground-state
degeneracy on a torus, the statistics and braiding properties
of quasiparticles, and topological entanglement entropy.23,24

All these physical properties are quite nonlocal, but they can
be studied in a unified and elegant manner using the nonlocal
string-net basis.

Unfortunately, this stringy picture for the physics under-
lying the topological phase seems poorly suited for describ-
ing phase transitions out of the topological phase. The large
and nonlocal string-net basis is difficult to deal with in the
low energy continuum limit appropriate to a phase transition.
Trouble arises from our inability to do mean-field theory to
capture the stringiness of the state in an average local way.
Indeed, the usual tool box built around the local order pa-
rameters is no longer available since there is no broken sym-
metry. We are thus naturally led to look for a local descrip-
tion of topological phases which lack traditional order
parameters.

Remarkably, there is already a promising candidate for
such a local description. A new local ansatz, tensor product
states �also called projected entangled pair states�, has re-
cently been proposed for a large class of quantum states in
dimensions greater than 1.25 In the tensor product state �TPS�
construction and its generalizations,26,27 the wave function is
represented by a local network of tensors giving an efficient
description of the state in terms of a small number of vari-
ables.

The TPS construction naturally generalizes the matrix
product states in one dimension.28,29 The matrix product state
formulation underlies the tremendous success of the density-
matrix renormalization group for one-dimensional systems.30

The TPS construction is useful for us because it allows one
to locally represent the patterns of long-range quantum
entanglement23,24,31 that lies at the heart of topological order.
In this paper, we show that the general string-net condensed
states constructed in Ref. 21 have natural TPS representa-
tions. Thus the long-range quantum entanglement in a gen-
eral �nonchiral� topologically ordered state can be captured
by TPS. The local tensors that characterize the topological
order can be viewed as the analog of the local order param-
eter describing symmetry-breaking order.

In addition to our basic construction, we demonstrate a set
of invariance properties possessed by the TPS representation
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of string-net states. These invariance properties are charac-
teristic of fixed-point states in a new renormalization group
for quantum states called the tensor entanglement renormal-
ization group �TERG�.32 This fixed-point property of string-
net states has already been anticipated21 and provides a con-
crete demonstration of string-net states as the infrared fixed
points of PT symmetric topological phases.

We would like to point out that the string-net states can
also be represented in terms of the multiscale entanglement
renormalization ansatz �MERA�,26,27 where the ansatz does
not flow at each scale.33 In other words, MERA �Refs. 26 and
27� represents a different way to do renormalization on the
wave function. The string-net wave functions are also fixed-
point wave functions under such a wave-function renormal-
ization procedure.

To compare the two renormalization pictures, we like to
point out that, under the MERA approach, the string-net
wave functions are rewritten in term of a treelike tensor net-
work in three dimensions �3D�, where each level of the tree
forms a two-dimensional �2D� tensor network and different
levels represent different coarse-graining scales. The fixed-
point or the scale-invariant nature of string-net states is cap-
tured by the fact that the tensors at each level of the tree are
the same. On the other hand, under the TERG approach, we
show that the tensor network that give rise to the norm of the
string-net wave function is invariant under coarse graining.

This paper is organized as follows. In Secs. II and III we
construct TPS representations for the two simplest string-net
condensed states. In Sec. IV we present the general construc-
tion. In Sec. V, we use the TPS representation to show that
the string-net condensed states are fixed points of the tensor
entanglement renormalization group. Most of the mathemati-
cal details can be found in the appendix.

II. Z2 GAUGE MODEL

We first explain our construction in the case of the sim-
plest string-net model: Z2 lattice gauge theory �also known as
the toric code�.17,18,20,21 In this model, the physical degrees of
freedom are spin-1/2 moments living on the links of a square
lattice. The Hamiltonian is

H = − �
p

�
i�p

�i
x − �

v
�
i�v

�i
z.

Here �i�p�i
x is the product of the four �i

x around a square p
and �p is a sum over all the squares. The term �i�v�i

z is the
product of the four �i

z around a vertex v and �v is a sum over
all the vertices. The ground state ��Z2

� of H is known ex-
actly. To understand this state in the string language, we
interpret the �z=−1 and �z=1 states on a single link as the
presence or absence of a string. �This string is literally an
electric flux line in the gauge theory.� The ground state is
simply an equal superposition of all closed-string states �e.g.,
states with an even number of strings incident at each vertex�

��Z2
� = �

X closed
�X� . �1�

While this state is relatively simple, it contains nontrivial
topological order. That is, it contains quasiparticle excita-

tions with nontrivial statistics �in this case, Fermi statistics
and mutual semion statistics� and it exhibits long-range en-
tanglement �as indicated by the nonzero topological en-
tanglement entropy23,24�.

The above state has been studied before using TPS.27,34

Our TPS construction is different from earlier studies be-
cause it is derived naturally from the string-net picture. As
illustrated in Fig. 1, we present two sets of tensors: T tensors
living on the vertices and g tensors living on the links. The g
tensors are rank 3 tensors g���

m with one physical index m
running over the two possible spin states ↑ ,↓ and two “in-
ternal” indices � ,�� running over some range 0,1 , . . . ,k.
The T tensors are rank 4 tensors T���� with four internal
indices � ,� ,� ,� running over 0 ,1 , . . .k.

In the TPS construction, we construct a quantum wave
function for the spin system from the two tensors, T and g.
The wave function is defined by

���mi�� = tTr	�vT� lg
ml
 . �2�

To define the tensor trace �tTr�, one can introduce a graphic
representation of the tensors �see Fig. 1�. Then tTr means
summing over all unphysical indices on the connected links
of tensor network.

It is easy to check that the Z2 string-net condensed ground
state that we discussed above is given by the following
choice of tensors with internal indices � ,�. . . running over 0,
1:

T���� = �1 if � + � + � + � even

0 if � + � + � + � odd,
� �3�

g00
↑ = 1, g11

↓ = 1, others = 0, �4�

The interpretation of these tensors is straightforward. The
rank-3 tensor g behaves like a projector which essentially

FIG. 1. �Color online� Z2 gauge model on a square lattice. The
dots represent the physical states which are labeled by m. The above
graph can also be viewed as a tensor network, where each dot
represents a rank-3 tensor g and each vertex represents a rank-4
tensor T. The two legs of a dot represent the � and � indices in the
rank-3 tensor g��

m . The four legs of a vertex represent the four
internal indices in the rank-4 tensor T����. The indices on the con-
nected links are summed over which define the tensor trace tTr.
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sets the internal index equal to the physical index so that �
=1 represents a string and �=0 represents no string. The
meaning of the tensor T���� is also clear: it just enforces the
closed-string constraint, only allowing an even number of
strings to meet at a vertex.

In this example, we have shown how to represent the
simplest string-net condensed state using the TPS construc-
tion. We now explain how to extend this construction to the
general case.

III. DOUBLE-SEMION MODEL

Let us start by turning to a slightly less straightforward
model which illustrates some details necessary for our TPS
construction for general string-net states. The model, which
we call the double-semion model, is a spin-1/2 model where
the spins are located on the links of the honeycomb lattice.
The Hamiltonian is defined in Eq. �40� of Ref. 21. Here we
will focus on the ground state which is known exactly. As in
the previous example, the ground state can be described in
the string language by interpreting the �z=−1 and �z=1
states on a single link as the presence or absence of a string.
The ground-state wave function is a superposition of closed-
string states weighted by different phase factors

��d semion� = �
X closed

�− �n�X��X� , �5�

where n is the number of closed loops in the closed-string
state X.20,21 As in the previous example, this state contains
nontrivial topological order. In this case, the state contains
quasiparticle excitations with semion statistics.

Like the Z2 state, the above string-net condensed state can
be written as a TPS with one set of tensors T on the vertices
and another set of tensors g on links. However, in this case it
is more natural to use a rank-6 tensor T and a rank-5 tensor
g. These tensors can be represented by double lines as in Fig.
2. The T tensors are given by

sublattice A: T���;���;��� = T���
0 ������������,

sublattice B: T���;���;��� = T���
0 ������������, �6�

where now each internal unphysical index � ,� , . . . runs over
0, 1. Here, the tensor T0 is given by

T���
0 = 
 1 if � + � + � = 0,3

i if � + � + � = 1

− i if � + � + � = 2.
� �7�

The rank-5 g tensors are given by

g00,00
↑ = g11,11

↑ = 1, g01,01
↓ = g10,10

↓ = 1, others = 0. �8�

Again, the ground-state wave function can be obtained by
summing over all the internal indices on the connected links
in the tensor network �see Fig. 2�

��d semion� = �
�mi�

tTr	�vT� lg
mi
�m1,m2, . . .� . �9�

From Eq. �8� we see that the physical indices and the
internal indices have a simple relation: each pair of internal
unphysical indices describes the presence/absence of string
on the corresponding link. Two identical indices �00 and 11�
in a pair correspond to no string �spin up� on the link and two
opposite indices �01 and 10� in a pair correspond to a string
�spin down� on the link. We may think of each half of the
double line as belonging to an associated hexagon, and be-
cause every line along the edge of a hexagon takes the same
value, we can assign that value to the hexagon. In this way
we may view physical strings as domain walls in some fic-
titious Ising model as indicated by the coloring in Fig. 2. The
peculiar assignment of phases in T0 serves to guarantee the
right sign oscillations essentially by counting the number of
left and right turns made by the domain wall.

Equation �9� is interesting since the wave function �5�
appears to be intrinsically nonlocal. We cannot determine the
number of closed loops by examining a part of a string net.
We have to examine how strings are connected in the whole
graph. But such a “nonlocal” wave function can indeed be
expressed as a TPS in terms of local tensors.

IV. GENERAL STRING-NET MODELS

We now show that the general string-net condensed states
constructed in Ref. 21 can be written naturally as TPS. To
this end, we quickly review the basic properties of the gen-
eral string-net models and string-net condensed states.

The general string-net models are spin models where the
spins live on the links of the honeycomb lattice. Each spin
can be in N+1 states labeled by a=0,1 , . . . ,N. The Hamil-
tonians for these models are exactly soluble and are defined
in Eq. �11� of Ref. 21. Here, we focus on the �string-net
condensed� ground states of these Hamiltonians.

In discussing these ground states it will be convenient to
use the string picture. In this picture, we regard a link with a
spin in state a�0 as being occupied by a type-a string. We
think of a link with a=0 as being empty. As in the previous
examples, the ground states are superpositions of many dif-
ferent string configurations. However, in the more general
case, the strings can branch �e.g., three strings can meet at a
vertex�.

FIG. 2. �Color online� The double-semion model on the honey-
comb lattice. The ground-state wave function �5� has a TPS repre-
sentation given by the above tensor network. Note that T and g has
a double line structure. Note that the vertices form a honeycomb
lattice which can divided into A sublattice and B sublattice.
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To specify a particular string-net model or equivalently a
particular string-net condensed state, one needs to provide
certain data. First, one needs to specify an integer N—the
number of string types. Second, one needs to give a rank-3
tensor �abc taking values 0, 1, where the indices a, b, and c
range over 0 ,1 , . . . ,N. This tensor describes the branching
rules: when �abc=0, that means that the ground-state wave
function does not include configurations in which strings a,
b, and c meet at a point. On the other hand, if �abc=1 then
such branchings are allowed. Third, the strings can have an
orientation and one needs to specify the string type a� corre-
sponding to a type-a string with the opposite orientation. A
string is not oriented if a=a�. Finally, one needs to specify a
complex rank-6 tensor Fkln

ijm, where i, j, k, l, m, n
=0,1 , . . . ,N. The tensor Fkln

ijm defines a set of local rules
which implicitly define the wave function for the string-net
condensed state. We would like to mention that the data
�N ,�ijk ,Fkln

ijm� cannot be specified arbitrarily. They must sat-
isfy special algebraic relations in order to define a valid
string-net condensed state.

The main fact that we will use in our construction of the
TPS representation of general string-net condensed states is
that the string-net condensed states can be constructed by
applying local projectors Bp �p is a plaquette of the honey-
comb lattice� to a no-string state �0�.21 These projectors Bp
can be written as

Bp = �
s

asBp
s , �10�

where Bp
s has the simple physical meaning of adding a loop

of type-s string around the hexagon p. The constants as are
given by

as =
ds

D
, �11�

where ds=1 /Fss�0
ss�0 and D=�sds

2.
This fact enables us to write the string-net condensed state

as

��strnet� = �
p

Bp�0� = �
p

�
s

asBp
s �0�

= �
u,s,t,¯

atasau ¯ �t,s,u,¯�coh, �12�

where

�t,s,u,¯�coh = Bp1

t Bp2

s Bp3

u
¯ �0� . �13�

Note that 	Bp1

t ,Bp2

s 
=0 when p1�p2 and the order of the Bp
s

operators in the above is not important.
These states are not orthogonal to each other. In the fol-

lowing, we would like to express these states in terms of the
orthonormal basis of different string-net configurations

�t,s,u,¯�coh = �
i,j,k,¯

	i,j,k,¯
t,s,u,¯�i, j,k,¯� . �14�

Here �i , j ,k ,¯� is a string-net configuration and i , j ,k , ¯
=0, ¯ ,N label the string types �i.e., the physical states� on
the corresponding link 	see Fig. 3�c�
. We note that

t ,s ,u , ¯ =0, ¯ ,N label the string types associated with the
hexagons 	see Fig. 3�a�
. As a result, the string-net con-
densed state is given by

��strnet� = �
t,s,u,¯

atasau¯ �
i,j,k,¯

	i,j,k,¯
t,s,u,¯�i, j,k,¯� .

To calculate 	i,j,k,¯
t,s,u,¯, we note that the coherent states

�t ,s ,u ,¯�coh can be viewed as string-net state in a fattened
lattice 	see Fig. 3�a�
.21 To obtain the string-net states where
strings live on the links, we need to combine the two strings
looping around two adjacent hexagons into a single string on
the link shared by the two hexagons. This can be achieved by
using the string-net recoupling rules21 �see Fig. 3�. This al-
lows us to show that the string-net condensed state can be
written as �see Appendix A�

��strnet� = �
t,s,u,¯

� �
hexagon

at� �
i,j,k,¯

��
vert

�viv jvkGtsu
ijk��i, j,k, ..� ,

�15�

where Gtsu
ijk �Fts�u

ijk / �vkvu� is the symmetric 6j symbol with
full tetrahedral symmetry35 and vi=�di.

Let us explain the above expression in more detail. The
indices i , j ,k , . . . are on the links while the indices u , t ,s , . . .
are on the hexagons. Each hexagon contributes to a factor as.
Each vertex in A sublattice contributes to a factor �viv jvkGtsu

ijk

FIG. 4. The graphic representation for the tensor Gtsu
���.

FIG. 3. �Color online� Using the fusion rules, we can represent
the coherent states �t ,s ,u ,¯� in terms of the orthogonal string-net
states.
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and each vertex in B sublattice contributes to a factor
�viv jvkGtsu

i�j�k�

. The indices i, j, k, t, s, and u around a vertex
are arranged as illustrated in Fig. 4.

Expression �15� can be formally written as a weighted
tensor trace over a tensor complex formed by T tensors and
gm tensors. First, let us explain what a tensor complex is. A
tensor complex is formed by vertices, links, and faces �see
Fig. 5�. T tensors live on the vertices and gm tensors live on
the links. The T tensor carries the indices from the three
connected links and the three adjacent faces, while the gm

tensor carries the indices from the two connected links �see
Fig. 6�. By having indices on faces, the tensor complex gen-
eralizes the tensor network.

The weighted tensor trace sums over all the � ,� , . . . indi-
ces on the internal links that connect two dots and sums over
all the u ,s , . . . indices on the internal faces that are enclosed
by the links, with weighting factors au, as, etc. from each
enclosed faces. Let us choose the T tensors on vertices to be
�see Fig. 7�

A sublattice: T���;tsu = �v�v�v�Gtsu
���,

B sublattice: T���;tsu� = �v�v�v�Gtsu
������

, �16�

and the gm tensor to be

g�A�B

m = ��Am��A�B
. �17�

In this case the string-net condensed state �15� can be written
as a weighted tensor trace over a tensor complex

��strnet� = �
m1,m2,. . .

wt Tr	�vT� lg
ml
�m1,m2, . . .� , �18�

where mi label the physical states on the links. We note that
the gm tensor is just a projector: it makes each edge of the
hexagon to have the same index that is equal to m. The
string-net condensed state �15� can also be written as a more
standard tensor trace over a tensor network �see Appendix
B�.

The string-net states and the corresponding TPS represen-
tation can also be generalized to arbitrary trivalent graph in
two dimensions. After a similar calculation as that on the
honeycomb lattice, we find that an expression similar to Eq.
�15� describes the string-net condensed state on a generic
trivalent graph in two dimensions 	see Fig. 8�a�
. The indices
in Eq. �15�, such as i , j ,k ,u ,s , t , . . ., should be read from the
Fig. 8�a�, where the indices of the G symbol is determined by
three oriented legs and three faces between them �see Fig. 4�.

Such a string-net wave function can be expressed in terms
of weighted tensor trace over a tensor complex 	see Fig.
8�b�


��strnet� = �
m1,m2,. . .

wt Tr	�vT� lg
ml
�m1,m2, . . .� , �19�

where the T tensors, depending on the orientations on the
legs, are given by Figs. 7 and 16.

V. STRING-NET WAVE FUNCTION AS A FIXED-POINT
WAVE FUNCTION

An interesting property of the string-net condensed states

T

gm

T’

u

s

β α

FIG. 5. A tensor complex formed by vertices, links, and faces.
The dashed curves are boundaries of the faces. The links that con-
nect the dots carry index � ,� , . . . and the faces carry index u ,s , . . ..
Each trivalent vertex represents a T tensor. The vertices on A sub-
lattice �open dots� represent T���;t,s,u. The vertices on B sublattice
�shaded dots� represent T���;t,s,u� =T������;t,s,u. The dots on the links
represent the gm tensor g�,�

m . In the weighted tensor trace, the
� ,� , . . . indices on the links that connect the dots are summed over,
and the u ,s , . . . indices on the closed faces are summed over with a
weighting factor auas. . ..

α

γ

(a)

u
s

t
β

(b)
m

αA Bα

FIG. 6. The graphic representation of �a� the T tensor, T���;tsu,
and �b� the gm tensor g�A�B

m .

t

α

β

α

γu
s

t
γu

s
γu

s

t
β

α

β

T T’ T’’

FIG. 7. Three T tensors associated with different orientations of
the legs are related: T���;tsu, T���;tsu� =T������;tsu, and T���;tsu�
=T����;tsu.

(a)

s

t

mg

T

(b)

u
k

j

i

FIG. 8. �Color online� �a� The string-net condensed states on
arbitrary trivalent graph in two dimensions can be written as �b� a
weighted tensor trace over a tensor complex formed by T and gm

tensors.
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constructed in Ref. 21 is that they have a vanishing correla-
tion length: 
=0. This suggests that the string-net condensed
states are fixed points of some kind of renormalization-group
transformation.21 In this section, we attempt to make this
proposal concrete. We show that the string-net condensed

states are fixed points of the TERG introduced in Ref. 32.
To understand and motivate the TERG, it is useful to first

think about the problem of computing the norm and local-
density matrix of the string-net state �19�. To obtain the
norm, we note that

coh�u2,s2,t2, . . .�u1,s1,t1, . . .�coh = �
i,j,k,¯

�
i�,j�,k�,¯

¯F
s1
�s1i

u1
�u10

F
u1

�u1j

t2
�t20

F
t1
�t1k

s1
�s10

��F
s2
�s2i�

u2
�u20

F
u2

�u2j�

t2
�t20

F
t2
�t2k�

s2
�s20 ��

¯ �Xb��Xb� = �
i,j,k,¯

� �
vertices

viv jvk

vt1
vs1

vu1
vt2

vs2
vu2

Ft1s1
�u1

ijk �Ft2s2
�u2

ijk ���
�

vs1
vt1

vk

vs2
vt2

vk
= �

i,j,k,¯
� �

vertices
viv jvkGt1s1u1

ijk Gu2s2t2
k�j�i�� . �20�

Thus, the norm can be written as

��strnet��strnet� = �
i,j,k,¯

�
t1,s1,u1,¯

�
t2,s2,u2,¯

� �
hexagon

at1
at2�

�� �
vertices

viv jvkGt1s1u1

ijk Gu2s2t2
k�j�i��

= wt Tr	T � T � T � T . . .
 , �21�

where we have used the identity �Ftsu
ijk��=Fust

k�j�i� vkvu

vivt
.

Here wt Tr is a tensor trace over a tensor complex formed
by the double-tensor T �see Fig. 9�. Again, the tensor com-
plex are formed by vertices, links, and faces. Each trivalent

vertex on the A�B� sublattice represent a double tensor
T�T��,

A:Tijk;s1s2,t1t2,u1u2
= viv jvkGt1s1u1

ijk Gu2s2t2
k�j�i� ,

B:T�ijk;s1s2,t1t2,u1u2
= viv jvkGt1s1u1

i�j�k�

Gu2s2t2
kji . �22�

The double-tensor T can be represented by a graph with
three oriented legs and three faces between them �see in Fig.
10� where each leg or face now carries two indices. In wt Tr,
we sum over all indices on the internal links. We also sum
over all indices on the internal faces independently with
weighting factors au1

au2
from each of the internal faces.

With minor modification, this expression for the norm can
be used to compute expectation values for local operators.
Indeed, the local-density matrix is given by a similar tensor
trace, except that the physical indices i , j ,k , . . . need to be left
unsummed in the region where we want to compute the den-

1 2

1 2

u u

i

s

j

s

'

FIG. 9. A tensor complex with vertices, links, and faces is
formed by the double tensors T and T�. �Dashed curves are bound-
aries of the faces.� The links that connect the dots carry index
i , j , . . . and the faces carry double-index u1u2 ,s1s2 , . . .. Each triva-
lent vertex represents a double-T tensor. The vertices on A sublat-
tice �open dots� represents Tijk;t1t2,s1s2,u1u2

. The vertices on B sublat-
tice �shaded dots� represents T�ijk;t1t2,s1s2,u1u2

=Ti�j�k�;t1t2,s1s2,u1u2
. In

the weighted tensor trace, the i , j , . . . indices on the links that con-
nect the dots are summed over and the u1u2 ,s1s2 , . . . indices on the
closed faces are summed over independently with a weighting fac-
tor au1

au2
as1

as2. . ..

1 21 2

1 2

1 21 2

1 2

1 21 2

1 2

t tu tu u u

i

s s

t

s

tu u

i

j

k

kki

j

s s

j

t

s

'

''

FIG. 10. Graphic representations for the three double-T tensors
Tijk;t1t2,s1s2,u1u2

, Tijk;t1t2,s1s2,u1u2
� =Ti�j�k�;t1t2,s1s2,u1u2

, and
Tijk;t1t2,s1s2,u1u2

� =Tijk�;t1t2,s1s2,u1u2
.
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sity matrix. Thus, the problem of computing expectation
vales and norms can be reduced to the problem of evaluating
the tensor trace �21�.

Unfortunately, evaluating tensor traces is an exponentially
hard problem in two or higher dimensions. This leads us to
the TERG method. The idea of the TERG method is to �ap-
proximately� evaluate tensor traces by coarse graining.36 In
each coarse-graining step, the tensor complex G with tensor

T is reduced to a smaller complex G̃ with tensor T̃. Repeat-
ing this operation many times allows one to evaluate tensor
traces of arbitrarily large complexes. One can therefore com-
pute expectation values of TPS with relatively little effort.

In general, the coarse-graining transformation is imple-

mented in an approximate way. That is, one finds a tensor T̃
such that wt Tr	T � T �¯
G�wt Tr	T̃ � T̃ �¯
G̃. How-
ever, as we show below, it can be implemented exactly in the

case of the string-net condensed states. Moreover, T̃=T, so
that the string-net condensed states are fixed points of the
TERG transformation.

To see this, note that the double-T tensor has the follow-
ing special properties �see Appendix C for a derivation�.

Basic rule 1. The deformation rule of T,

�
m

Tm,j,i;u1,s1,t1;u2,s2,t2
Tm�,k�,l�;r1,t1,s1;r2,t2,s2

= �
m

Tm,i,k�;s1,r1,u1;s2,r2,u2
Tm�,l�,j;t1,u1,r1;t2,u2,r2

. �23�

Basic rule 2. The reduction rule of T,

�
m,l,t1,t2

at1
at2

Ti,l,m;t1,s1,u1;t2,s2,u2
Tm�,l�,j�;u1,s1,t1;u2,s2,t2

=
1

D
�ij�s2

�u2
�s1

�iu1
. �24�

The above two basic rules can be represented graphically
as in Fig. 11�a� and 12. The two basic rules also lead to
another useful property of the double-T tensor as represented
by Fig. 12.

The relations in Figs. 11�a� allow us to reduce the tensor
complex that represents the norm of the string-net condensed

state to a coarse-grained tensor complex of the same shape
�see Fig. 13�. This coarse-graining transformation is exactly
the TERG transformation. Since the tensor T is invariant
under such a transformation, we see that the string-net wave
function is a fixed point of the TERG transformation.

VI. CONCLUSIONS AND DISCUSSIONS

In conclusion, we found a TPS representation for all the
string-net condensed states. The local tensors are analogous
to local order parameters in Landau’s symmetry broken
theory. As an application of TPS representation, we pre-
sented the TERG transformation and show that the TPSs
obtained from the string-net condensed states are fixed points
of the TERG transformation. In Ref. 32, we have shown that
all the physical measurements, such average energy of a lo-
cal Hamiltonian, correlation functions, etc. can be calculated
very efficiently by using the TERG algorithm under the TPS
representations. Thus, TPS representations and TERG algo-
rithm can capture the long-range entanglements in topologi-
cally ordered states. They may be an effective method and a
powerful way to study quantum phases and quantum phase
transitions between different topological orders.

Recently, it has come to our attention that the connection
between the triple-line tensor network and the string-net
states is also discussed independently in a related paper by
Buerschaper, Aguado, and Vidal �Ref. 37�.
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APPENDIX A: TENSOR PRODUCT STATE FROM
STRING-NET RECOUPLING RULE

To calculate 	i,j,k,¯
u,s,t,¯, we note that the coherent states

�u ,s , t ,¯�coh can be viewed in a string-net state in a fattened
lattice 	see Fig. 3�a�
.21 To obtain the string-net states where
strings live on the links, we need to combine the two strings
looping around two adjacent hexagons into a single string on
the link shared by the two hexagons. We make use of the
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FIG. 11. Graphic representation of the basic rules for the double
tensor T: �a� the deformation rule and �b� the reduction rule.
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FIG. 12. A useful reduction of tensor complex.

FIG. 13. �Color online� The coarse-graining procedure for hon-
eycomb lattice.

TENSOR-PRODUCT REPRESENTATIONS FOR STRING-NET… PHYSICAL REVIEW B 79, 085118 �2009�

085118-7



string-net recoupling rules21 �see Fig. 3� to represent the co-
herent states �u ,s , t ,¯�coh in terms of proper orthogonal
string states

�u,s,t,¯�coh = �
i,j,k,¯

¯Fs�si
u�u0Fu�uj

t�t0 Ft�tk
s�s0

¯ �Xb� ,

where Xb is the string-net state described in Fig. 3�b�. Note

that on each link we have a factor such as Fs�si
u�u0 and we

multiply such kind of factors on all links together. Using

Fs�si
u�u0=

vi

vsvu
�us�i, we can rewrite the above as

�u,s,t,¯�coh = �
i,j,k,¯

¯

vi

vsvu
�us�i

v j

vtvu
�tu�j

vk

vsvt
�st�k ¯ �Xb� .

�A1�

Applying the string-net recoupling rules again, we rewrite
the above as

�u,s,t,¯�coh = �
i,j,k,¯

�
vertices

�viv jvk

vtvsvu
Fts�u

ijk �i, j,k,¯�
vsvt

vk
,

�A2�

= �
i,j,k,¯

�
vertices

�viv jvkGtsu
ijk �i, j,k,¯� , �A3�

where Gtsu
ijk =Fts�u

ijk /vkvu is the symmetric 6j symbol with full
tetrahedral symmetry. Putting Eq. �A3� into Eq. �12�, we fi-
nally obtain

��strnet� = �
i,j,k,¯

�
t,s,u,¯

� �
hexagon

at�� �
vertices

�viv jvkGtsu
ijk�

��i, j,k,¯� . �A4�

We note that the indices, such as i , j ,k ,u ,s , t ,¯, should be
read from the Fig. 3. The arrow in �out� on a vertex will
determine that we put k� or k in the G symbol. In this con-
vention, the physical labels in the G symbol are always val-
ued as k� on sublattice A �arrow in� and k on sublattice B
�arrow out�.

APPENDIX B: STRING-NET CONDENSED STATE AS A
TPS ON A TENSOR NETWORK

We have expressed the string-net condensed state �15� as
a weighted tensor trace on the tensor complex. In this sec-
tion, we will show that the string-net condensed state �15�
can also be written as a more standard tensor trace over a
tensor network

��strnet� = �
m1,m2,. . .

tTr	�vT� lg
ml
�m1,m2, . . .� . �B1�

Here the tensor network �see Fig. 14� is formed by two kinds
of tensors: a T tensor for each vertex and a gm tensor for each
link. Unlike the tensors in Fig. 2, now T and gm have a
triple-line structure �see Fig. 15�. The T tensor on a vertex is
given by

Tu��u;t��t;s��s = T���;tsu
0 �ut��ts��su�, �B2�

where

T���;tsu
0 = �atasau�1/6�v�v�v�Gtsu

���. �B3�

As shown in Fig. 4, T0 can be labeled by three oriented
lines and three faces between them. Notice that T���;tsu

0 has
the cyclic symmetry T���;tsu

0 =T���;sut
0 =T���;uts

0 due to the tet-
rahedron symmetry of G symbol.

The gm tensor on each link is a projector

guA��AuA;uB��BuB

m = h�A�B;uAuB

m �uAuB�
�uBuA�

,

h�A�B;uAuB

m = ��Am��A�B
� , �B4�

where m is the physical index running from 0 to N and rep-
resents the N+1 different string types �plus the no-string
state�. Note that uA, �A, and uA� are indices on the side of the
A sublattice and uB, �B, and uB� are indices on the side of the
B sublattice. Basically, gm makes m=�A and �A=�B

� . The
corresponding edge of the hexagon has a string of type m.
The choice of ��A�B

� in gm makes the T tensors to be the same
on the A and B sublattices.

Our construction has a slightly different form from the
usual TPS construction, but we can bring our construction
into the usual form with a single set of tensors T�M� defined
on vertices. This is because the matrix gm on each link is
basically a projector �with a twist�, so that we can always
split it into two matrices gmA and gmB �see Fig. 16� and asso-
ciate one with each vertex the link touches. Doing this for
every link in effect displaces the physical degrees of freedom
from the links to the vertices. This procedure seems to en-
large the Hilbert space on each link from Hm to HmA

� HmB
,

T

g m

FIG. 14. �Color online� A tensor network where each tensor has
triple-line structure. The tensor trace sums over all the indices on
the links that connect two dots.

(a) (b)β

α

γ
m

u’

s’

su

t’
t

αA
A

A
αB

Bu’

u Bu’

u

FIG. 15. �Color online� �a� The T tensor, Tu��u;t��t;s��s

=T���;tsu
0 �ut��ts��su�, and �b� the gm tensor guA��AuA;uB��BuB

m

=h�A�B;uAuB

m �uAuB�
�uBuA�

, with a triple-line structure.
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however, the operators gmA and gmB impose the constraint
mA=mB keeping the physical Hilbert space intact. Grouping
the displaced physical degrees of freedom on each vertex
into a new physical variable M we can combine three sites
around each vertex into one site. This is illustrated in Fig. 16,
where the states in each dashed circle are labeled by M. With
this slight reworking of the degrees of freedom, the new
tensors on sublattices A and B can be expressed as

TA,u�u�;t�t�;s�s�
iAjAkA = T���;tsu

0iAjAkA �ut��ts��su���iA
��jA

��kA
,

TB,u�u�;t�t�;s�s�
kBlBmB = T������;t�s�u�

0kBlBmB
�u�t�t�s�s�u��kB

��lB
��mB

,

�B5�

with

T���;tsu
0ijk

= �atasau�1/6�viv jvkGtsu
���, �B6�

where ijk are physical indices M. Note that the tensors
TA

iAjAkA and TB
kBlBmB still have a triple-line structure. The

string-net condensed state now can be rewritten as

��strnet� = �
M1,M2,. . .

tTr�vTA�B�
Mv �M1,M2, . . .� . �B7�

APPENDIX C: PROOF OF BASIC RULES OF T

The two basic rules can be proved easily by using the
pentagon identity.21 First, the pentagon identity leads to a
decomposition law for supertensor T

Ti,j,k;t1,s1,u1;t2,s2,u2
= viv jvkGt1s1u1

ijk Gu2s2t2
k�j�i�

= viv jvk�
n

dnGs1u1n
u2s2

�i Gu1t1n
t2u2

�j Gt1s1n
s2t2

�k .

Using this expression, it is easy to proof the two basic rules,
Eqs. �23� and �24�. Here we also use the symmetries of G
symbol

Gtsu
ijk = Guts

kij = Gij�u�
ts�k�

, �C1�

which can be easily verified from the symmetry of F symbol

Fts�u
ijk = Fut�s

kij vkvu

v jvs
= Fiju�

ts�k�

�C2�

and the definition of G symbol.
Then let us proof the deformation rule Eq. �23�. Proof:

�
m

Tm,j,i;u1,s1,t1;u2,s2,t2
Tm�,k�,l�;r1,t1,s1;r2,t2,s2

= viv jvkvl �
n,n�,m

dndn�dmGs1t1n
t2s2

�mGt1u1n
u2t2

�j Gu1s1n
s2u2

�i Gt1s1n�
s2t2

�m�

Gs1r1n�
r2s2

�k�

Gr1t1n�
t2r2

�l�

= viv jvkvl�
n,n�

dndn���
m

dmGs1t1n
t2s2

�mGt1s1n�
s2t2

�m��Gt1u1n
u2t2

�j Gu1s1n
s2u2

�i Gs1r1n�
r2s2

�k�

Gr1t1n�
t2r2

�l�

= viv jvkvl�
n,n�

dndn���
m

dmG
t2
�t1

�m

s1
�s2n

G
t1
�t2

�m

s2
�s1n���Gt1u1n

u2t2
�j Gu1s1n

s2u2
�i Gs1r1n�

r2s2
�k�

Gr1t1n�
t2r2

�l�

= viv jvkvl�
n

dnGt1u1n
u2t2

�j Gu1s1n
s2u2

�i Gs1r1n�
r2s2

�k�

Gr1t1n�
t2r2

�l� . �C3�

In the last step we use the simple pentagon identity21

�
m

dmG
t2
�t1

�m

s1
�s2n

G
t1
�t2

�m

s2
�s1n�*

=
�nn�

dn
�s1

�s2n�t1
�t2n�. �C4�

Similarly, we have

�
m

Tm,i,k�;s1,r1,u1;s2,r2,u2
Tm�,l�,j;t1,u1,r1;t2,u2,r2

= viv jvkvl�
n

dnGu1s1n
s2u2

�i Gs1r1n�
r2s2

�k�

Gr1t1n�
t2r2

�l�
Gt1u1n

u2t2
�j .

Finally, we have

g mA

g mB

FIG. 16. �Color online� The T-g from TPS representations for
string-net states can be deformed to standard TPS representations
by splitting the matrix gm into two matrices gmA, gmB on each link
and recombining three sites around a vertex �the three states inside
a dashed circle� into one site.
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�
m

Tm,j,i;u1,s1,t1;u2,s2,t2
Tm�,k�,l�;r1,t1,s1;r2,t2,s2

= �
m

Tm,i,k�;s1,r1,u1;s2,r2,u2
Tm�,l�,j;t1,u1,r1;t2,u2,r2

. �C5�

The reduction rule is also easy to proof by using pentagon identity.21 Proof:

�
m,l,t1,t2

at1
at2

Ti,l,m;t1,s1,u1;t2,s2,u2
Tm�,l�,j�;u1,s1,t1;u2,s2,t2

= viv j �
n,n�,m,l,t1,t2

dndn�dmdlat1
at

2
*Gs1u1n

u2s
2
*i

Gu1t1n
t2u

2
*l

Gt1s1n
s2t

2
*m

Gs1t1n�
t2s2

�m�

Gt1u1n�
u2t2

�l�
Gu1s1n�

s2u2
�j�

= viv j �
n,n�,t1,t2

dndn�at1
at2

�Gs1u1n
u2s2

�i G
u1s1n�

s2u
2
*j���

l

dlGu1t1n
t2u2

�l G
t1u1n�

u2t
2
*l����

m

dmGt1s1n
s2t

2
*m

G
s1t1n�

t2s
2
*m��

= viv j �
n,t1,t2

�t
1
*t2nat1

at2
Gs1u1n

u2s
2
*i

Gu1s1n
s2u

2
*j� = viv j�

n

anGs1u1n
u2s

2
*i

Gu1s1n
s2u

2
*j�

=
viv j

D
�

n

dnGs1u1n
u2s

2
*i

Gu1s1n
s2u

2
*j� =

1

D
�ij�s

2
*iu2

�s
1
*iu1

. �C6�

Notice in the third line, we use the fact that at2
=at

2
*.
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